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ABSTRACT 

We define, in each finite group G, ~-normalizers associated with a Schunck 
class h of the form E® f with f a formation. We use these normalizers in order to 
give some sufficient conditions for a saturated formation of finite groups to 
have a maximal local definition. 

1. Introduction 

The celebrated Carter-Hawkes f-normalizers of a soluble group have been a 
source of inspiration of numerous works always in the soluble (or at most n- 
soluble) universe. In this paper we introduce the b-normalizers of a finite, non- 
necessarily soluble, group where b is a Schunck class of the form E~ f with f a 
formation and give some applications on normal complementation and local 
definitions of saturated formations of finite groups. We prove that in the 
theory of f-normalizers, the solubility hypothesis can be weakened to the 
solubility of the f-residual to obtain the main results of the classical theory: 
conjugation, cover and avoidance property and relations with f-projectors. 

After this introduction of f-normalizers we are able to give a construction of 
a maximal S~-closed local definition under a certain hypothesis on f. The 
closure operation S" is just the analogue of the well-placed subgroups closure 
operation Sw, but using the generalized Fitting subgroup F'(G)= 
Soc(G mod@(G)). The construction of the maximal local definition of a 
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saturated formation of soluble groups was done by K. Doerk in [4]. In [ 12], this 
problem is investigated by P. F6rster and E. Salomon in the general case. We 
give some sufficient conditions for a saturated formation of finite groups to 
have a maximal local definition. 

2. Preliminaries 

In this section, we collect some definitions and notations as well as some 
well-known elementary results, omitting their proofs. 

First recall that a primitive group is a group G such that for some maximal 
subgroup U of G, U~ = 1 (where U~ is the intersection of all G-conjugates of 
U, the largest unique normal subgroup of G contained in U). 

A primitive group is of one of the following types: 
(1) Soc(G), the socle of G, is an abelian minimal normal subgroup of G, 

complemented by U. 
(2) Soc(G) is a non-abelian minimal normal subgroup of G. 
(3) Soc(G) is the direct product of the two minimal normal subgroups of G 

which are both non-abelian and complemented by U. 
We will denote by ~ the class of all primitive groups and by ~i, i E { 1, 2, 3} 

the class of all primitive groups of type i. 
For basic properties of the primitive groups, the reader is referred to [ 10]. 
I f H / K i s  a chief factor of G such that H / K  < ¢P(G/K), then H/Kis  said to be 

a Frattini chief factor of G. I f H / K  is not a Frattini chief factor of G, then it is 

supplemented by a maximal subgroup U of G (i.e. G = UH and K < U n H). 
A subgroup H of a group G is called CAP-subgroup (Cover and Avoidance 

Property), if for every chief factor R / K  of G, H either covers (R = K(R n H)) 
or avoids (R N H < K) it. 

For more details about formations and Schunck classes the reader is referred 
to [3], [6], [10], [11]. The notation is standard and can be found mainly in [14]. 

All groups considered here are supposed to belong to a fixed but otherwise 
arbitrary universe ~ contained in 6, the class of all finite groups, such that 
~3 = {Q, S, R0, E.}~3. 

All classes of groups considered will be ~3-classes, i.e. ifY is a class of groups 

we suppose that ~ is contained in ~3. 

3. b-Critical subgroups 

(3.1) DEFINITION. Let M b e  a maximal subgroup of a group G. Then the 
group X = G/MG is a primitive group; we say that M is of  type i if XE~9~ 
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(1 ___< i < 3) and M is a monolithic maximal subgroup of G i f M  is of type 1 or 
type 2. 

(3.2.) DEFINTION. Given a Schunck class b, a maximal subgroup U of a 
group G is called b-normal in G if G~ UG ~ b and b-abnormal otherwise. 

(3.3) DEFINITION. Let U, G and b be as above. U is b-critical in G, if U is 
b-abnormal monolithic maximal subgroup of G and G = UF'(G) where 
F'(G) = Soc(G mod ~(G)). For properties of F'(G) see [11]. 

It is not difficult to prove: 

(3.4) LEMMA. I fU  is b-critical in G and N is a normal subgroup of G such 
that N < U, then U/N is b-critical in G/N. 

We want to describe all Schunck classes with the following property: 

(C) If  G ~ b, then G contains an B-critical subgroup. 

Property (C) is not satisfied by all Schunck classes. For instance, let b be the 
Schunck class generated by a non-abelian simple group S and ~3 = ~. Then 
G = S × S E b(b) and G does not contain B-critical subgroups. 

F6rster in [9; 2.14] characterizes all Schunck classes with the property (C) in 
the soluble case. The same characterization holds in the general case, although 
here we must deal with non-soluble primitive groups; the proof  is similar to 
F6rster's. 

(3.5) THEOREM. For a Schunck class b, the following three statements are 
pairwise equivalent: 

(i) b has the property (C). 
(ii) b = E.  QRo Pr(b) with Pr(b) = b N ~. 

(iii) b = E.~for some formation ~. 

(3.6) DEFINrnONS. (a) [10] Let H/Kbe a chief factor of G. Denote: 

[H/K]*G = l [H/K](G/CG(H/K) if H/K is abelian, 

[ G /CG(H /K) if H/K is non-abelian. 

The primitive group [H/K]*G is the monolithic primitive group associated 
with the chief factor H/K of G. 

Note that if H/K is a non-Frattini chief factor of G and M is a monolithic 
maximal subgroup of G supplementing H/K in G, then G/Mc -~ [H/K]*G. 
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(b) Given a Schunck class ~, a chief factor H/K of  a group G is said to be 

b-central in G if [H/K]*G E b and b-eccentric otherwise. 

4. b-Normalizers 

We assume that b is a Schunck ~3-class of the form b = E®f for some 
formation ~. Thus, the existence of b-critical subgroups is assured in every 

group G ~ ~ - b. 
This allows us to define b-normalizers in every group G of the universe % in 

an abstract way. 

(4.1) DEFINITION. Let G be a group in %. A subgroup D of G is an 

b-normalizer of  G, if there exists a chain of subgroups: 

(1) D = H ~ <  H~_I < . . .  < HI<-_Ho=G 

such that Hi is an h-critical subgroup of Hi-  ~ (i = 1 . . . . .  n) and such that Hn 

contains no b-critical subgroup. 

If G ~ b, we interpret the definition to mean D = G. The condition on Hn is 

equivalent to D ~ b. 

Denote by Nor~(G) the set of  all b-normalizers of G. 

If ~3 = 5, the class of  soluble groups, this definition coincides with the 

classical one in [3], [1 5]. 

Of course b-normalizers are invariant under epimorphisms. 

(4.2) PROPOSITION. Let D be an b-normalizer o f  a group G and N a normal 
subgroup of  G; then DN/N is an b-normalizer o f  G/N. 

It is not true in general that Norb(G ) is a conjugacy class of subgroups 

of  G. For instance, take ~3 = ~ and b = 9~ the class of nilpotent groups. The 

92-critical subgroups of Alt(5) are isomorphic to Air(4), Dih(1 0) and Sym(3). 

Thus, we obtain two distinct conjugacy classes of 92-normalizers, isomorphic 

to 6'3 and 6"2. 
This example also shows that we cannot talk in general of  the cover- 

avoidance property. 

If M is an h-critical subgroup of G and H/K an h-central chief factor of  G, 

then Mcovers it and [H n M / K  n M]*M ~ [H/K]*G. I fH /Ki s  a non-Frattini 

chief factor of  G covered by M, then it is easy to see that H n M / K  N M is a 

chief factor of  M and Aut~(H/K)~  Auba(H n M/K N M). 

Repeated use of  these facts, together with D E b, proves easily the following: 
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(4.3) THEOREM. Let G be a group and D ENor~(G). 

(i) I f  H/K is an b-central chief factor of G, then D covers H/K and 
H n D/K n D is a chief factor of D and Auto(H/K) is isomorphic to 
Auto(H O D/K N D). 

(ii) Among the non-Frattini chief factors of G, D covers exactly the b-central 
ones. 

Unfortunately, nothing can be said on the b-eccentric chief factors of G. 

EXAMPLE 1. Take ~3--6 and the Schunck class b =E~92" where 92* 

denotes the class of quasinilpotent groups, i.e. b = (G/F'(G) = G). 
Air(5) has an irreducible and faithful module M over GF(2). Let X = [M]A 

with A isomorphic to Alt(5). We have that X ~ l  and M = F'(X) = Soc(X). 

Thus X 6 b. Now, A is b-critical in X and A E Nor~ (X). All chief factors of X are 

non-Frattini and A covers X/M. Now, X/M is an b-central chief factor of  X. 

Moreover A avoids M which is an b-eccentric chief factor of X. 

Next, we consider the relation of the b-normalizers to the maximal sub- 
groups of G. 

(4.4) THEOREM. Let M be a monolithic maximal subgroup of a group G. 
Then M contains an b-normalizer of G if and only if M is b-abnormal in G. 

PROOF. It is easy to see that if M is a maximal subgroup of G containing 
an h-normalizer of  G, then M is b-abnormal in G. Conversely, let M 
be an t~-abnormal monolithic maximal subgroup of  G. Denote R = 
Soc(G modMe) .  If M is b-critical in G, the result is obvious. Other- 

wise, F'(G) < Me. Let X be an b-critical subgroup of  G. It is clear that Mo 
is not contained in X. Then, G = XMe and R = Me(R n X). Since M~ _-< 

Cc(R/M~) we have G = XCe(R/Me). Thus, R n X/Me n Xis a chief factor of  

X and Autx(R O X/MG N X) is isomorphic to Autc(R/Ma). Consequently, 

R n X/Me o X is an b-eccentric chief factor of  X. 

On the other hand, M n X is a maximal subgroup of  X. Since M a n  X = 

(M n X)xand X = (M n X)(R n X)we have X/(M O X)x ~ b. Then, M n Xis 

an b-abnormal monolithic maximal subgroup of  X. By induction, M O X 

contains an b-normalizer of  X. Since Nor~(X) is contained in Nor~(G), we 
obtain the stated result. 

It is not true in general that an b-abnormal maximal subgroup M of a group 

G contains an b-normalizer of  G. For instance, take the saturated formation 

b = (T: Alt(5) ~ Q(T)) and ~3 - 6. Consider G = A × B the direct product of  A 
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and B, where A m B ~ Alt(5). If U is a maximal subgroup of G such that 
U~ = 1, then U is an {)-abnormal maximal subgroup of G that does not contain 
any b-normalizer of G. Suppose, arguing by contradiction, that there exists 
E~Nor~(G) such that E _--_ U. Let M be an B-critical subgroup of G with 
E < M  and E6Nor~(M).  Since M is monolithic, we can assume Mc = A .  
Therefore, M = (M n B) × A. Let Sbe  a minimal normal subgroup of  Mcon- 
rained in M n B. Clearly, S is a non-Frattini I~-central chief factor of M. By 
(4.3), E covers S. Consequently, S _-__ M O B O U = 1, a contradiction. 

In the rest of this Section 4 assume that ~ is a saturated U-formation. Most of 
the properties of f-normalizers of soluble groups, such as conjugacy, cover- 
avoidance property, relation with f-projectors, do not hold in the general case. 
However, ~-normalizers of groups G such that G f is soluble (i.e. G E ~f) do 

really verify those classical properties. 

(4.5) THEOREM. Let G be a group such that GfE®. Then: 
(i) I f  D is an Fnormalizer of G, D is a CAP-subgroup of G that covers the f- 

central chief factors of G and avoids the Feccentric ones. 
(ii) Let H be a subgroup of G with G = HF(G). Then, there exists A E Projr(H) 

and E ~Projr(G) such that A = H n E. 
(iii) Every Fnormalizer of G is contained in an y-projector of G. 
(iv) For every Hall system Y~ of  G f, every Fprojector of  No(Z) is an F 

normalizer of G. Thus, U {Projr(No(Z))/Z Hall system of G f} = Norf(G). 
(v) Norf(G) is a conjugacy class of subgroups of G. 

PRooF. (i) We use induction on the order of G. Let D be an ~-normalizer of 
G and assume that D is a maximal subgroup of G. I f H / K  is a chief factor of G 
and H/K is non-abelian, D covers H/K because D is a maximal of type 1. If 
H/K is abelian and D does not cover H/K, HDc/D~ is a minimal normal 
subgroup of G/Do and D6(H n D) = Do. Then, H N D = K and D avoids 

H/K. 
I fD is not a maximal subgroup of G, then there exists an f-critical maximal 

subgroup M of G such that D < M, D ENorr(M) and G =MF(G).  By 
induction, D is a CAP-subgroup of M. Now, M is a CAP-subgroup of G and 

then D is a CAP-subgroup of G (see [8] lemma (4.4)). 
If H/K is an f-central chief factor of G, by (4.3) D covers H/K. Suppose H/K 

is an f-eccentric chief factor of G. If D covers H/K, then H n D/K n D is a 
chief factor of D and we have [H/K]*G ~ [H n D/K O D]*D. Now, D is an F 
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group and then all chief factors of  D are f-central. Thus, [H/K]*G El, a 
contradiction. Therefore, H/K must be avoided by D. 

Using similar arguments to those used in [3; 5.12] (ii) is proved. 

(iii) We use induction on I Gt .  We can suppose G $ f. Let D be an f- 
normalizer of G. Then, there exists an f-critical subgroup M of G such that 
D < M and D ~Norf(M).  Since M ~ is soluble, there exists A ~Projf(M) such 
that D < A. Now, G = MF(G). By (ii), there exists B U Projr(M ) and E ~  
Projr(G) such that B = M n E. Since M ~ is soluble, by corollary (5.3) of[16] A 
and B are conjugate in M, i.e., A = B" with m E M .  Then A = M n E m and D 
is contained in E r" ~ Projr(G). 

Using the above properties and with similar arguments to those used in [ 1 8], 

(iv) is proved. 
(v) Let Zbe  a Hall system ofG *. Then, NG(Y-) is an 92f-group. By [16; 5.3] two 

f-projectors of N~(Z) are conjugated. On the other hand, two Hall systems of  G r 
are conjugated. Applying (iv), Nori(G) is a conjugacy class of subgroups of G. 

EXAMPLE 2. We take ~3 = ~ and the Schunck class ~ = E .  92* where 92* 
denotes, as in Example 1, the class of quasinilpotent groups. If V is a 3- 
dimensional vector space over GF(2) and G = [V]Aut V, then G/Ge E ~ and 
Nor~(G) is the set of B-maximal supplements of Soc(G). But an example on 
p. 1 6 1 of [ 1 4] shows that they are not all conjugate. This example shows that 
conjugacy of b-normalizers does not hold in groups G such that G/Ge E ~, 
where b is a Schunck class not a saturated formation. 

Let G be a group with G I soluble. Since Projl(G) is a conjugacy class of 
subgroups of G, every f-projector of  G contains an f-normalizer of G. This 
property is not true in general. If we take ~3 = ~ and f -- 92, the class ofni lpotent  
groups, the group G = Alt(5) has three distinct conjugacy classes of  92-pro- 
jectors, namely, Sylp(G), p = 2, 3, 5. Hence, if PESyls(G) then P does not 

contain any 92-normalizer of G. 
Now we can follow [3; 5.1 5] and with little changes we are able to prove the 

following complementat ion theorem which is a generalization of  one due to G. 

Higman. 

(4.6) THEOREM. Let G be a group such that G ~ is abelian. Then, G f is 

complemented in G and any two complements in G are conjugate. The 

complements are the ~-normalizers of G. 

Next, we use (4.6) to give a short proof  of a well-known result of  Semetkov 

(cf. [ 1 7]). 
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(4.7) THEOREM (Semetkov). Let G be a group such that for some prime p, 
the Sylow p-subgroups of G r are abelian. Then every chief factor of G below G f 

whose order is divisible by p is an ~-eccentric chief factor of G. 

PROOF. Suppose the theorem is false and let G be a minimal counter- 

example. Then G ~ ~ 1. Let N be a minimal normal subgroup of  G such that 

N < G f. From minimality of G, every chief factor of  G between N and G f 

whose order is divisible by the prime p is f-eccentric and N is the unique 

minimal normal subgroup of  G contained in G r. Then p divides I NI and N is 

an ~-central chief factor of  G. Since G/Co (N) ~ f, N < Z(GI) and N is an abelian 

p-group. Let P be a Sylow p-subgroup of  G such that N < P. If  (Gr) ' ~ 1, then 

N <(Gr)'N Z(G f) N P = 1 by [14; 2.2 Satz p. 416], a contradiction. Thus 

(Gf) ' = 1 and G f is an abelian group. Applying (4.6) G F is complemented in G by 

an f-normalizer. By (4.5), N is an ~-eccentric chief factor of  G, a contradiction. 

Schmid, in [16], proves the following theorem: 

(4.8) THEOREM (Schmid). Let G be a group such that every chief factor 
of G below G f is F-eccentric. I f  G t is p-nilpotent for every prime p in 
n = n lG: Gfl, then G ~ is complemented in G and any two complements are 
conjugate. 

Next, we use our normalizers to analyze the complements of  G T in this 

theorem. 

(4.9) THEOREM, Let G be a group as above. The complements of  G r are 
precisely the (~ N ~)-normalizers of G (here, ~ denotes the class of n-groups). 

PROOF. We prove by induction on the order of  G that every (~ O ~ ) -  

normalizer is a complement of  G I in G. First, we note that ~ = f f~ ~ is a 

saturated formation and G ~ = G f. Let N be the normal n-complement of  G ~. 

Then, GrlNis a nilpotent n-group. I f N  ~ 1 and E is an ~-normalizer of  G, then 

EN/N is an S-normalizer of  G/N. By induction, E A G f < N. Since E is a 

n-group and N is a n'-group, we have that E N G r = 1 and the theorem is 

proved. Thus, we can suppose that N = 1 and then G ~ is a nilpotent n-group. 

Consequently, G is a n-group and every ~-normalizer of  G is an ~-normalizer of  

G. Since G f is a nilpotent group, every ~-normalizer E of  G avoids every 

f-eccentric chief factor of  G. Then, E r) G f = 1. 

Now, if Tis a complement of  G f in G, Tis conjugate to an ~-normalizer of  G. 

Consequently, T is an ~-normalizer o f  G. 
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5. Some facts about formations 

(5.1) DEFINITIONS. (a) We call a subgroup E of a group G E %  well-placed 

in G, if there exists a chain: 

E = E ,  < E ,  _ i <= • • • <-- Eo = G, such that E~_ ~ = E,F'(E~_ i) for every i. 

We let S" be the closure operation defined by: 

S ~  = (E : E is a well-placed subgroup of an ~-group), for every group class ~. 

(b) A formation function g - - { g ( p ) : p  a prime number} is said to be 
S~-closed i f g ( p )  is an S ' -c losed formation, for every prime p. 

In the soluble case, S'~ = Sw and every formation is Sw-closed ([2; 1.8]). 

Let b be a ~3-Schunck class of the form b = E~ f for some formation f. The 
b-critical maximal subgroups and the b-normalizers of a group G are both 
examples of well-placed subgroups. Moreover, it is not difficult to prove that if 
N is a normal Hall 7r-subgroup of a group G U ~3 and X is a complement  to N in 
G, then X is a well-placed subgroup of G (see [ 1 3]). 

Formations are not S'~-closed in general. For instance, let 92* be the 
formation of quasinilpotent groups and ~ = ~. Every subgroup of Air(5) is 
well-placed in Alt(5). If  H is a subgroup of Air(5) isomorphic to Dih(10), then 
H ~ S ~ 9 2 "  - 92*. Hence, 92* is not S~-closed. 

(5.2) DEFINITION. Let b be an Schunck ~-class of  the form E®f for some 
formation f and let ~ be a ~-formation. 

Denote 92 = (G E~8/Nor~(G)C ~). We prove that 92 is an R0-closed class. 
Let i 6 { 1 , 2 }  and let G/N~Eg.I with N t N N 2 - - 1 .  If  DENorb(G),  then 
DN~/N~ ENorb(G/Ni) .  Hence, D / D  A N~ E ~  and D ~R0~t -- ~t. Consequently, 
R09~ = ~. Now, denote b~ = Q92. Then, we have R0b~ = RoQ92 c QRog~ = 

Q92 = b~. Thus, b~ is R0-closed. Consequently, b~ is a ~-formation containing 

(5.3) D~FINITION. Let f be a saturated ~8-formation locally defined by an 

integrated and full formation function f .  
For every prime p,  denote b y f * ( p )  the formation 

f * ( p )  = a ( G  : Norr(G) c f ( p ) )  

(i.e. f * ( p )  = f~p~ in the notation of (5.2)). 
A group G E b(f) is called strongly dense (with respect to f) if G ~ f * ( p )  for 

each prime p E 7t(Soc(G)). 
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The boundary b(f) is said to be strongly wide if it does not contain any 

strongly dense group. 
Recall that a group G E b (f) is dense with respect to f if G ~ b ( f (p ) )  for each 

prime p ~ n(Soc(G)). The boundary b(f) is said to be wide if it does not contain 
any dense group (see [1 2]). 

(5.4) REMARK. If  a group G is strongly dense with respect to f, then G is 
dense with respect to f. Let G be a group in b(f) such that G is strongly dense 
with respect to f. Then, for each prime p~n(Soc(G)) ,  there exists T(p)E 
Norf(G) such that T(p)Ef(p). Since G/Soc(G)Ef, Norf(G/Soc(G))= 
{G/Soc(G)} and G = T(p)Soc(G). Then, G/Soc(G)~f(p). Consequently, 
G ~ b ( f (p)) ,  for each p Erc (Soc(G)) and G is dense with respect to f. 

The converse is not true in general. Take ~3 = ~, the class of all finite groups, 
and let 92 be the class of nilpotent groups. The integrated and full formation 
function f s u c h  that 92 = L F( f )  is done b y f ( p )  = ~p for every prime p, where 
®p denotes the class of p-groups. Then, G = Alt(5) is dense with respect to 92, 
but G is not strongly dense with respect to 92. In fact, G $f*(5) .  

Let G be a group and H/Kbe a chief factor of G. Denote by C*(H/K) the set 
of all elements g ~ G such that conjugation by gK induces an inner automor- 
phism in H/K. 

Recall the definitions of the class of nilpotent groups: 

92 = {G ~ ~ [ every chief factor H/K of G verifies G = C~(H/K)) 

and the class of quasinilpotent groups: 

92" = (G E ~ [ every chief factor H/K of G verifies G = G~(H/K)). 

In a similar way, if f is a saturated ~-formation locally defined by a 
formation function f ,  we can define: 

* = { G E ~3 [ every chief factor H/K of G verifies G / C~ (H/K) ~ f(p) 
for each prime p dividing the order of H/K). 

(5.5) PROPOSITION. The following statements are equivalent: 
(i) f =  f*. 

(ii) b(f) is wide. 

PgooF. (i) implies (ii). Suppose there exists a group G~b( f )  such that 
G is dense with respect to f. Then, G is a monolithic primitive group and 
for each p E n(Soc(G)) we have G E b(f(p)). Since Soc(G)=  C*(Soc(G)), 
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G/C~(Soc(G))Ef(p) for each p ~ n(Soc(G)). But this implies that G E l*  = f, 

a contradiction. Thus, b(f) is wide. 

(ii) implies (i). It is clear that f c f*. Suppose f* ÷ f and let G be a group in 

f* - f of  least order. Then G E b(f). Since G E f * we have G/C*(Soc(G)) E f (p )  
for each p ~ n(Soc(G)). Hence G/Soc(G) ~ f ( p )  for each p ~ n(Soc(G)). This 

is to say, G~b( f (p ) )  for each p~n(Soc(G))  and b(f) is not wide, a con- 
tradiction. 

(5.6) COROLLARY. Let f be a saturated ~3-formation. I f  f contains all 
nilpotent groups in ~3, and b(f) is wide, then f contains all quasinilpotent groups 
in ~3. 

6. Local formations 

For any group class ~, and for any closure operation C, ~c denotes the 

largest C-closed class contained in :~, whenever such a class exists. 

Let f be a saturated U-formation and b a ~3-formation. Let f~ be the 
U-formation defined as (5.2). 

(6.1) LEMMA. Let Y be an S~-closed formation. Then, Y is contained in f~ iJ 
and only iff O ~ c ~. Thus, if~ = (f~)(ego'S'}, ~ is the largest S'~-closed formation 
such that f n ~ c 6. 

PROOF. Suppose that ~ is an S ' -closed formation such that • c f~. Let G 

be a group in ~ n ~. Then, there exists a group R such that NorT(R ) C b and 
there exists a normal subgroup N of R with G ~ R / N .  If DENorf(R) ,  

DN/N E Norf(R/N). Since R/N E ~, we have DN/N = R/N. Hence, G E b and 

we have f n ~ C 6. 
Conversely, take G E ~ and D ~ Nor t (G). Since ~ is S'~- closed, D E S~ Y = ~. 

Then, D E f n Y c b and G E f~. Thus, ~ is contained in f~.. 

In the following, f will be a saturated ~3-formation and f t h e  integrated and 

full formation function such that f = LF(f) .  

(6.2) THEOREM. Let g be an S'-closed formation function. Then, f = LF(g) 

i f  and only if  the following two conditions hold: 
(a) I f  G ~b(f)  is strongly dense with respect to f, then G q~g(p) for some 

p U n(Soc(G)). 

(b) fo =< g --< f* ,  where fo is the minimal formation function such that f = 
LF(fo). 
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PROOF. First, we note that fo --< f* .  Suppose that f -- LF(g) and for every 
prime p, S'~g(p) = g(p). Then, every strongly dense group G ~ b(f) such that 
G ~g(p)  for each p E zr(Soc(G)) belongs to f, and so (a) holds. 

Since f0 is the minimal formation function such that f = LF(f0), we have 
f0 --< g. Moreover, if h (p )  = ®p(g(p) fl f) for every prime p, h is an integrated 
and full formation function such that f = LF(h). S incef  is un ique , f (p )  = h (p)  
for each prime p. Then, for every prime p,  we have g (p )  N f c f (p ) .  Applying 
the above lemma, g(p) c f*(p). Thus f0 _-< g _-< f* .  

Conversely, suppose g satisfies (a) and (b). Then, it remains to show that 

LF(g) c f since then f = LF(f0) C LF(g) C f. Consider a group G ~ LF(g) - f of 
least order. Then, G E b(f) and G is a monolithic primitive group. If  Soc(G) is 
abelian of characteristic p,  say, then we deduce that G/Co(Soc(G))Eg(p) M f. 
Since g(p) is an S ' -c losed  formation and g(p) c f*(p) we have g(p) M ~ C 
f(p). Now, G/Soc(G)Ef. Then, GEl, a contradiction. Hence, Soc(G) i s  
non-abelian and we have G E g ( p ) C f * ( p )  for each pElt(Soc(G)).  This 
implies that G is strongly dense with respect to f and GEg(p) for each 
p E zt(Soc(G)), which contradicts (a). Thus, ~ = LF(g). 

(6.3) PROPOSITION. The following statements are equivalent: 
(a) b(f) is strongly wide. 
(b) ~ = LF(f*) .  

PROOF. Since f0 _--< f* ,  we have f = LF(f0) C LF(f*) .  
(a) implies (b). Suppose that f ~ LF(f*)  and choose a group G in LF(f*)  - 
of least order. Then, G~b(~) and for every p~zt(Soc(G)) we have 

G/Co(Soc(G))~f*(p). If  1 ~ Co(Soc(G)), then Soc(G) is abelian of charac- 
teristic p,  say. Since G/Co(Soc(G))Ef*(p), there exists a group R such that 
Noq(R)Cf(p)  and there exists a normal subgroup N of R with 
G/Co(Soc(G)) ~--R/N. By minimality of G, we have G/CG(Soc(G))EL Let D 
be an f-normalizer of R. Then, DN/N is an f-normalizer of R/N. Since 

D~f(p) ,  DN/NEf(p).  Hence G/Co(Soc(G))Ef(p) and G E L F ( f ) = f ,  a 
contradiction. Thus, Co(Soc(G))= 1 and G is a primitive group of type 2. 
Since G ~ L F ( f * ) ,  we have G Ef*(p)  for each p En(Soc(G)). Thus, G is 
strongly dense with respect to f, a contradiction. 

(b) implies (a). Assume that there exists a group G E b(f) strongly dense 
with respect to f. Then, G is a monolithic primitive group. I fG is of  type 2, then 
G = Lf(f*)  = f, a contradiction. Hence, G is a primitive group of type I. Let p 
be the characteristic of Soc(G). Since G E f * ( p )  there exists an f-normalizer T 
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of G such that TEf(p) .  Now, T is a complement to Soc(G) and then 
G ~ ~pf(p) = f (p)  C f, a contradiction. 

(6.4) LEMMA. Suppose that f is an S~-closed formation function. For every 
prime p, define t(p) = (f.(p)){QRo.S'}. Ifb(f) is strongly wide, then ~ = LF(t). 

PROOF. It suffices to prove that f0 _< t by (6.2). Sincef(p) is an S'~-closed 
formation for every prime p and f i s  integrated, we have t i p )  c f*(p). By 
definition of t(p), f (p)  c t(p). Then, f0(P) C t(p) and f = LF(t). 

(6.5) THEOREM. Assume that f and f* are both S'~-closed formation func- 
tions. Then f has a unique maximal S~-closed local definition if and only ifb(f) 
is strongly wide. Moreover, f* itself is the maximal S'-closed local definition 
off .  

PROOF. Suppose that b(f) is strongly wide. Applying the above lemma, 
f = LF(t). Since f*  is S~-closed, we have t = f*.  Further, i fg  is an S~-closed 
formation function such that I = LF(g), from (6.2), we deduce that f0 < g < f*.  
Thus f*  is the maximal S/~- closed local definition of f. 

Conversely, assume that g is the unique maximal S~-closed local definition 
of f. If G E b(f) and G is strongly dense with respect to f, a routine argument 
shows that G is a primitive group of type 2. Let p be prime dividing the order of 

Soc(G). Define: 

~{QRo, S'~}(f(p) U {G}) ifr  = p, 
g*(r) | 

If(r) if r ÷ p. 

It is clear that g* is an S~-closed formation function. Further, if Tis a group 
in b(f) which is strongly dense with respect to f, then T is a primitive group of 
type 2. Thus, there exists a prime rEn(Soc(T)) such that r ÷ p. Then, 
Tqtg*(r) = f(r). On the other hand, t / p )  U {G} is contained inf*(p) .  Then, 

g*(p) is contained in f*(p). Thus, f o < g * < f  *. By (6.2), f=LF(g*) .  
Then, g * <  g by maximality of g. Thus, G Eg(p) and this is true for each 
p E n(Soc(G)). Therefore, G ~ T, a contradiction. 

In the soluble case, b(f) c ~, and then b(f) is strongly wide. Therefore, we 
can deduce the following: 

(6.6) COROLLARY (Doerk [4]). In the universe ~ of all finite soluble groups, 
every local formation possesses a unique maximal local definition. 

Finally, we give some sufficient conditions for a saturated formation ot 
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finite groups to have a maximal local definition. Recall that if ~ is a class of 
groups, h(~) is the class of ~-perfect groups, i.e. groups with no epimorphic 
images in ~. 

(6.7) LEMMA (Doerk [5]). Let ~ and ~ be homomorphs and ~ = h (b(O N b). 
Then ~ is a largest (unique) homomorph such that ~ N ~ c L 

In our case, we define for each prime p, f # ( p ) =  h(b( f (p ) )N  D. By 
(6.7), f ~ ( p )  is the largest homomorph such that f # ( p )  N ~ c t ip) .  In fact, 
f#(p) A ~=f (p ) .  Since f * ( p ) A  f = f ( p ) ,  we have that f * ( p ) c f # ( p )  for 
each prime p. 

Suppose that for each prime p, f ~ ( p )  is S'~-closed. Then, for each prime p, 
f # (p )  = f * ( p ) .  Thus, f #  is a formation function. Moreover, a group G is 
dense with respect to ~ if and only if G is strongly dense with respect to f. 

With similar arguments to those used in (6.5), one can prove: 

(6.8) THOEREM. Suppose that for every prime p, f # ( p )  is S'~-closed. Then 
possesses a unique maximal local definition i f  and only i f  b(D is wide. In this 
case, f #  = f*  is the maximal local definition. 

Finally, using (6.1) one can easily prove: 

(6.9) PROPOSITION. In the universe ~ of  all finite soluble groups f #  is a 
formation function i f  and only i f  f ~* is Sw-closed. 
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